Protein kinase inhibition by omega-3 fatty acids.
نویسندگان
چکیده
Recent data suggest that omega-3 fatty acids may be effective in epilepsy, cardiovascular disorders, arthritis, and as mood stabilizers for bipolar disorder; however, the mechanism of action of these compounds is unknown. Based on earlier studies implicating omega-3 fatty acids as inhibitors of protein kinase C activity in intact cells, we hypothesized that omega-3 fatty acids may act through direct inhibition of second messenger-regulated kinases and sought to determine whether the omega-3 double bond might uniquely confer pharmacologic efficacy and potency for fatty acids of this type. In our studies we observed that omega-3 fatty acids inhibited the in vitro activities of cAMP-dependent protein kinase, protein kinase C, Ca(2+)/calmodulin-dependent protein kinase II, and the mitogen-activated protein kinase (MAPK). Our results with a series of long-chain fatty acid structural homologs suggest an important role for the omega-3 double bond in conferring inhibitory efficacy. To assess whether omega-3 fatty acids were capable of inhibiting protein kinases in living neurons, we evaluated their effect on signal transduction pathways in the hippocampus. We found that omega-3 fatty acids could prevent serotonin receptor-induced MAPK activation in hippocampal slice preparations. In addition, we evaluated the effect of omega-3 fatty acids on hippocampal long-term potentiation, a form of synaptic plasticity known to be dependent on protein kinase activation. We observed that omega-3 fatty acids blocked long-term potentiation induction without inhibiting basal synaptic transmission. Overall, our results from both in vitro and live cell preparations suggest that inhibition of second messenger-regulated protein kinases is one locus of action of omega-3 fatty acids.
منابع مشابه
The Effect of Omega Fatty Acids on Bcl-2 Gene Expression and Protein Production in Cancerous Gastric Tissue
Introduction: Gastric cancer is the fourth common cancer and the second leading cause of death from cancer worldwide. Omega fatty acids are a group of non-saturated fatty acids of long chains derive from linolenic, linoleic and oleic fatty acids. The current study aimed at examining the possible effects of oral administration of omega-3, -6 and -9 fatty acids on gastric cancer cell apoptosis in...
متن کاملThe Effect of Omega Fatty Acids on Bcl-2 Gene Expression and Protein Production in Cancerous Gastric Tissue
Introduction: Gastric cancer is the fourth common cancer and the second leading cause of death from cancer worldwide. Omega fatty acids are a group of non-saturated fatty acids of long chains derive from linolenic, linoleic and oleic fatty acids. The current study aimed at examining the possible effects of oral administration of omega-3, -6 and -9 fatty acids on gastric cancer cell apoptosis in...
متن کاملProduction of Protein-Polysaccharide Fibers Containing Omega-3 Fatty Acids Using Electrospinning Method and Determination of Optimal Process Conditions with Response Surface Methodology
Background and Objectives: Omega-3 fatty acids are very important in the human diet for the prevention of diseases. Materials & Methods: In the present study, the effect of whey protein concentrate (5, 6.67, 10, 13.33, 15%) and guar gum (0.1, 0.25, 0.55, 0.85, 1%) were evaluated on the qualitative properties of fish oil emulsion and electrospun fibers. Results: Increasing concentration of whey...
متن کاملEffect of Short and Long-Term Treatment with Omega-3 Fatty Acids on Scopolamine-Induced Amnesia
Two omega-3 fatty acids including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are essential for the physiologic function of neuronal cell membrane. Normal function of neuronal cell membrane requires appropriate composition of fatty in its structure. Present study was designed to compare the effect of short-term and long-term pretreatment with omega-3 fatty acids on scopolamine...
متن کاملEffect of Short and Long-Term Treatment with Omega-3 Fatty Acids on Scopolamine-Induced Amnesia
Two omega-3 fatty acids including docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) are essential for the physiologic function of neuronal cell membrane. Normal function of neuronal cell membrane requires appropriate composition of fatty in its structure. Present study was designed to compare the effect of short-term and long-term pretreatment with omega-3 fatty acids on scopolamine...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of biological chemistry
دوره 276 14 شماره
صفحات -
تاریخ انتشار 2001